25th National Award

for

Excellence in Energy Management 2024

"Shantiniketan Properties Private Limited", [Noida]

Brookfield Properties

Energy & Sustainability Team

Mr. Baljit Singh Executive Vice President INDIA-operations

Mr. Mukund K. Kumar Assistant Vice President ESG

Mr. Srijit Mukherjee Senior General Manager Energy & Sustainability

Mr. Chintamani Garge General Manager Operations

Mr. Prabhakar Saxena Manager Energy & Sustainability

Mr. Loveneesh Khurana Senior Manager Energy & Sustainability

Mr. Ratnesh Kumar Senior Executive Energy & Sustainability

Ms. Nupur Tomar Assistant Manager ESG

Ms. Kritika Sharma Executive ESG

 \sim

Brookfield Properties | India

26 Assets Cities M SF total area M SF operational area M SF under development area M SF future development Gross asset value Diverse tenants

З

Campus at a GLANCE..!!

Entity Name	Shantiniketan Properties Pvt. Ltd.
Land Area	19.3 Acres
	Sustainable features that include
	Energy efficient chillers with ATCS
Proiect	Rooftop Solar system
Highlights	CTI certified cooling towers
	AHUs with EC Fans & ES Filter
	• 100% LED lights
	Water-efficient landscaping
	 Zero water discharge campus achieved through Sewage treatment plant (STP) with ultra- filtration
	 High-performance glazing system to allow minimal heat gain while maximizing pleasant daylight ingress
	Electric vehicle charging stations
	 Zero Wet Waste Discharge campus achieved through Organic waste composter
	Breakout Area
Amenities	Restaurant & Food
	Courts
	Daycare Indeer and outdoors well being facilities

4

Campus at a GLANCE..!!

Energy Performance

- Energy consumption increased from FY2022 to FY2024 due to higher physical occupancy, which rose from 36% in FY22 to 66% in FY23 and 95% in FY24.
- Renewable energy sourced through IEX/open access is included in FY24.

Energy Performance.....Contd.

ENERGY PERFORMANCE INDEX (KWH/M2/YEAR)

Brookfield Properties

 \sim

Energy Performance.....Contd.

- EPI Increase: EPI rose by 73% from FY22 to FY24 due to a 160% increase in occupancy rate during the same period.
- HVAC Intensity (kWh/Employee): Reduced by 34.7% from FY22 to FY24.
- Energy Consumption (kWh/Employee/Day): Decreased by 33.8% from FY22 to FY24.

 $^{\circ}$

Energy Share of Major Utilities			
Section	Share of Energy (%age)		
Occupants	49%		
Common Area Consumption			
Chillers & Aux	31.2%		
AHUs	9.4%		
Common Lightings	4.4%		
Lifts	4.0%		
Ventilation	0.5%		
Others (Including Fire fighting, Plumbing, STP)	1.7%		
Common Area Consumption	51%		

100%

Total

o

Major Encon Projects	Description	Status	EDC
HVAC Ring Main Line System	All the individual plant rooms to be inter-connected so that single plant room can supply chilled water to two or more buildings. Higher energy savings due to optimal loading of chillers during low load period.	Installation in progress	Dec-24
Automation of chemical dosing in HVAC cooling tower	Installation of automatic chemical dosing and bleeding systems to manage water quality and impurity levels in HVAC cooling towers, and an automatic tube cleaning system to remove fouling and scaling from condenser tubes for efficient heat exchange.	Completed	
Water Automation	Automating water tank levels to conserve energy and water involves implementing systems that monitor, control, and optimize water usage in real-time.	Yet to start	Nov-24

Energy savings projects implemented in last three years

Year	Major EM Project Implemented	Investment (INR Million)	Energy Saving (Million kWh)	Cost Savings (INR Million)
FY 2021-22	4	1.64	0.34	3.8
FY 2022-23	6	54.95	2.1	23
FY 2023-24	3	6.58	0.72	6.6

Photographs:

Actuator valve replacement

Demand control ventilation

EC Fan Retrofitting

Energy savings projects implemented in last three years.....Contd.

Chiller Plant Optimizer

PLC SCADA for DG Set

Centralized Building Management System

Cooling Tower Upgradation

ESP Filter Retrofitting

Exhaust fan integration with CO sensor in Basement

Innovation Project-1: Integration of STP Exhaust Fan with H₂S and CH₄ Sensor

Background: STP plants generate various gases, including methane (CH₄), hydrogen sulfide (H₂S), ammonia (NH₃), and carbon dioxide (CO₂), during the treatment process. Exhaust fans help to remove these potentially harmful gases from the plant to ensure a safer working environment.

Challenges: Exhaust fans operate continuously at full capacity, regardless of actual demand, leading to unnecessary energy consumption and higher operational costs.

Proposed System: Integrated methane and hydrogen sulfide (H₂S) sensors with an STP plant exhaust fan to enhancing energy efficiency while maintaining safety and operational effectiveness.

Advantages:

- Reduces energy consumption by operating the exhaust fan only when needed, based on real-time gas detection.
- Optimizes exhaust fan use, preventing unnecessary wear and tear, and extending equipment lifespan.
- Provides early warning for dangerous gas levels, improving workplace safety

Cost benefit analysis:

Total Investment	: 4.5 Lacs
Annual Electrical energy saving	: 39420 kWh
Annual Cost Saving	: 3.85 Lacs Rs.
Payback	: 14 months

Innovation Project-2: IOT Based data analytics tools

Purpose:

4

The tool is designed to monitor energy consumption, forecast future energy needs, schedule the use of green energy through IEX/Open access, and integrate with occupant and equipment meters.

Functions and Features:

- Real-Time Monitoring: Detects anomalies
- Forecasting: Analyzes historical data to predict future energy needs.
- Green Energy Scheduling
- Compares energy consumption to identify improvement areas.
- Auto-Invoicing

Advantage:

- Energy Efficiency: Optimizes use and reduces waste through real-time monitoring.
- Cost Savings: Lowers costs by using green energy.
- Offers accurate billing
- Provides actionable insights for better energy management.
- Sustainability: Enhances sustainability by integrating green energy and reducing reliance on non-renewables.

Cost Benefit Analysis:

Total Investment, Lacs Rs.	22.4 Lacs
Annual Electrical energy saving :	66901 kWh (Estimated)
Annual Cost Saving :	36.38 Lacs Rs. (Including Renewable cost)
Payback :	07 months

Brookfield Properties

Innovation Project-3: Automatic chemical dosing, bleeding for HVAC cooling towers, and chiller condenser tube cleaning system

Background: Chemical dosing and bleeding was done manually, which resulted in overuse or underuse of chemicals, leading to poor water quality and higher condenser approach and operational costs.

Challenges:

- Increased scaling and fouling
- Reduce heat exchange efficiency
- Higher energy and water consumption
- Increased maintenance cost
- Shortened equipment lifespan
- Poor water quality

Proposed System: Installed automatic chemical dosing and bleeding systems to manage water quality and impurity levels in HVAC cooling towers, and an automatic tube cleaning system to remove fouling and scaling from condenser tubes for efficient heat exchange.

Advantages:

- Energy Savings: Maintains heat transfer efficiency and prevents scaling and fouling.
- Water Conservation: Manages the cycle of concentration (COC) to reduce water use.
- Extended Equipment Life: Prevents damage and wear caused by fouling, prolonging equipment lifespan.

Cost benefit analysis:

Total Investment, Lacs Rs.
Annual Electrical energy saving
Annual Cost Saving
Payback

- : 13.80 Lacs Rs.
 : 157584 kWh
- : 14.78 Lacs Rs.
- : 11 months

Utilization of Renewable Energy Sources (Onsite)

Year	Source	Installed Capacity in MW	Total Generation through Solar(MWH)	Overall consumption (MWH)	% Share with overall energy Consumption
FY 2021-22	Solar	0.107	144.3	15,507	0.93%
FY 2022-23	Solar	0.177	232.8	22,326	1.04%
FY 2023-24	Solar	0.177	231.8	26,761	0.87%

TOTAL POWER GENERATION THROUGH ONSITE SOLAR(MWH)

Utilization of Renewable Energy Sources (Offsite)

Offsite Renewable Energy (Through IEX)				
Year	Total Renewable Energy (MWH) Purchase	overall consumption (MWH)	% Share with overall energy Consumption)	
FY 2021-22	0	15,507	0%	
FY 2022-23	0	22,326	0%	
FY 2023-24	4,361	26,761	16.3%	

GHG emission and Net Zero target

GHG EMISSION, TONNES CO2

By Kailash Babar, ET Bureau + Last Updated: Dec 01, 2022, 05:22 PM IST

Indoor air quality

19

Brookfield Properties

- Monitoring IAQ parameters (CO, CO2, PM2.5, PM10, TVOC etc.) at building levels
- Implementing solutions to control the IAQ parameters

Building Management System

Awards and Certifications

Committed to deliver on our Net Zero target by 2040 or sooner.

Net Zero Action Plan

Public Disclosure & Voluntary Initiatives

 Year
 Program
 Status
 Score

 2023
 Climate Change 2023
 Submitted
 B

Note: Not all companies requested to respond to CDP do so. Companies who are requested to disclose their data and fail to do so, or fail to provide sufficient information to CDP to be evaluated will receive an F. An F does not indicate a failure in environmental stewardship.

Back to search Show 5 10 20

		TARGETS		
Company/Financial Institution	NEAR TERM 🍦	LONG TERM 🍦	NET-ZERO 🍦	ORGANIZATION TYPE
Brookfield India Real Estate Tru s India, Asia	COMMITTED		COMMITTED	Company
Date published/updated 2023	Target summary Near term: Committed			
Sector	Net zero: Committed			
Real Estate				

CDP

22

M

SBTi

Our Commitment to Net Zero

Committed to industry-leading sustainable development to deliver long-term value to our business, partners and communities

Zero Emission Program

We are considering a three-pronged approach that prioritizes energy reduction and renewable energy procurement

Net zero emissions

18%*

Energy efficiency and end of life upgrades

- Direct investment in ROI projects
- Equipment at end of life that will be replaced by efficient solutions
- Assisting Occupants in adopting energy efficiency

75%*

Renewable energy procurement

 To provide energy replacement for both common area as well as Occupant occupied area 7%*

Carbon offsets

Providing solutions for Occupants with targets sooner than 2040

* Estimated average asset energy profile, varies with type of asset, location and hours of operations

Renewable Energy Strategy- Short Term

We have considered a multi-pronged approach for renewable energy procurement in order to progress towards our goal of net zero emissions by 2040

Renewable Energy Strategy- Medium/Long Term

In the long term we intend to transition to our owned Renewable energy plant in a phased manner by 2027.

Modium/Long Torm		
Medium/ Long Term		
3 RD PARTY OPEN ACCESS	Candor Techspace	3 rd Party Open Access Source
% Load on Renewable Energy ~95%	Estimated Timelines for Renewable Energy Phase 1 – Q2CY24 – Solar (40%)	
INCLUDES:	Phase 2 - Q2CY25 – Solar + Wind (~70%)	
• SOLAR • WIND FARM • STORAGE	Phase 3 - Q2CY27 – Solar + Wind + Storage (95%)	
	 Will allow us to meet our long term decarbonization targets 	,
COMMERCIALS:	 Occupant areas will be supplied through 3rd Party Open Access 	<u> ⁺ 4> ⁻ </u>
IN PROGRESS	 Common areas will be supplied initially through 3rd Party open access and post regulatory approvals 	
	through group captive from owned plant in Bikaner	

Rates will be cheaper than current DISCOM supplies

Water Snapshot

27

DRIP IRRIGATION

SEWAGE TREATMENT PLANT

INSTALLATION OF WATER EFFICIENT FIXTURES

FLOW METERING INTEGRATION

RAIN WATER HARVESTING PITS

DROUGHT TOLERANT SPECIES

Biodiversity Profile

Candor TechSpace, Sector 62, Noida

Existing biodiversity profile

28

Brookfield Properties

- Total 19% green cover with 100% ecological connectivity.
- Habitat comprising of 83 floral species.
- 49% floral species are native to India.
- Habitat supporting 17 faunal species.
- Simpson's Biodiversity Index (SBI) value for trees, shrubs, herbs, and climbers was found to be 0.77, 0.50, 0.17 and 0.72 respectively.
- Less than 1% of invasive species were noted.

- Green cover value > 40% of the land area (ground and built structures) is considered as good and 95% ecological connectivity is considered suitable for the faunal species.
- The faunal species value is based on a single visit survey and the diversity and abundance may vary.
- Simpson's Biodiversity Index value ranges between 0 to 1, a value close to 1 indicates higher diversity and evenness.
- The given Carbon Sequestration values are calculated for trees only and do not include other green patches comprising of shrubs, herbs and grass. Also, the
 Carbon Sequestration value is influenced by factors like the type of species, its girth and height.
- Currently Urban Heat Island (UHI) value has been represented on the right-side, increasing the green cover percentage can help in reducing the UHI effect.
 The images have been processed from USGS Earth Explorer, Landsat.

41 Tree species

11 Shrub species

6 Climber species

Ecological connectivity

' Thank You'

Prabhakar Saxena Shantiniketan Properties Private Limited Sector 62, Noida, Uttar Pradesh 201304

Email: prabhakarv.saxena@jll.com Mobile: +91 8130488538